Mycobacterial polymerases: A possible drug target for TB treatment

  • Swati Meena CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India.
  • Laxman S. Meena CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India.
Keywords: Mycobacterium tuberculosis, Polymerase activity, Polymerase denaturation

Abstract

Mycobacterium tuberculosis causes a deadly disease called Tuberculosis (TB).  It enters in a healthy person through respiration and ultimately reaches into lung epithelial cells, where it attacks on lung macrophages to replicate in it and increase its population.  For replication process, polymerase activity is essential.  There are some compounds which inhibit polymerase activity or denature polymerase enzyme such as Humic acid, Heparin, Urea, Organic compounds, Phenolic compounds etc.  In this manuscript, we are trying to show importance of M. tuberculosis pathogenesis by using polymerase activity that may be therapeutic drug target for TB.

References

[1] Chopra P, Meena LS, Singh Y, New drug targets for Mycobacterium tuberculosis. Indian J Med Res 2003; 117: 1-9.
[2] http://www.who.int/tb/publications/global_report/en/ 2017
[3] Glickman MS, Jacobs WR Jr., Microbial Pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 2001; 104(4): 477-485.
[4] Mahamed D, Boulle M, Gangaa Y, Arthur CMc, Skroch S, Catinasa LOO , Pillay K, Naickera M, Rampersad S, Mathonsi C, Hunter J, Sreejita G, Pym AS, Lustiga G , Sigal A, Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells. eLife 2017;6:e22028.
[5] Meena LS, Rajni, Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS J 2010; 277: 2416–2427.
[6] Mehta PK, Karls RK, White EH, Ades EW, Quinn FD, Entry and Intracellular replication of Mycobacterium tuberculosis in cultured human microvescular endothelial cells. Microbial Pathogenesis 2006; 41 (2-3): 119–124.
[7] Raffetseder J, Pienaar E, Blomgran R, Eklund D, Brodin VP, Andersson H, Welin A, Lerm M, Replication Rates of Mycobacterium tuberculosis in Human Macrophages Do Not Correlate with Mycobacterial Antibiotic Susceptibility. PLoS ONE 2014; 9(11): e112426.
[8] Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD, Dynamic persistence of antibiotic-stressed mycobacteria. Science 2013; 339(6115): 91-95.
[9] Kandola P, Meena LS, Extra pulmonary tuberculosis: Overview, manifestations, diagnostic and treatment techniques. Adv. Mater. Rev. 2014; 1(1): 13-19.
[10] Cambier CJ, Falkow S, Ramakrishnan L, Host Evasion and Exploitation Schemes of Mycobacterium tuberculosis. Cell 2014; 159 (7): 1497–1509.
[11] Teitelbaum R, Schubert W, Gunther L, Kress Y, Macaluso F, Pollard JW, Murray DNMc, Bloom BR, The M Cell as a Portal of Entry to the Lung for the Bacterial Pathogen Mycobacterium tuberculosis. Immunity 1999; 10 (6): 641–650.
[12] Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A, Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 2013; 6: 666–677.
[13] Timm J, Lim EM, Gicquel B, Escherichia coli-Mycobacteria Shuttle Vectors for Operon and Gene Fusions to lacZ: the pJEM Series. J Bacteriol 1994; 176(21): 6749-6753.
[14] Eitson JL, Medeiros JJ, Hoover AR, Srivastava S, Roybal KT, Aínsa JA, Hansen EJ, Gumbo T, Oersa NSC van, Mycobacterial Shuttle Vectors Designed for High-Level Protein Expression in Infected Macrophages. Appl Environ Microbiol 2012; 78 (19): 6829-6837.
[15] Parikh A, Kumar D, Chawla Y, Kurthkoti K, Khan S, Varshney U, Nandicooria VK, Development of a New Generation of Vectors for Gene Expression, Gene Replacement, and Protein-Protein Interaction Studies in Mycobacteria. Applied and Environmental Microbiology 2013; 79(5): 1718-1729.
[16] Lee h, Kim BJ, Kim BR, Kook YH, Kim BJ, The Development of a Novel Mycobacterium Escherichia coli Shuttle Vector System Using pMyong2, a Linear Plasmid from Mycobacterium yongonense DSM45126T. PLoS ONE 2015; 10(3): e0122897.
[17] Wilson IG, Inhibition, Facilitation of Nucleic Acid Amplification. Applied and Environmental Microbiology 1997; 63(10): 3741–3751.
[18] Bickley J, Short JK, McDowell DG, Parkes HC, Polymerase chain reaction (PCR) detection of Listeria monocytogenes in diluted milk and reversal of PCR inhibition caused by calcium ions. Lett Appl Microbiol 1996; 22(2):153-158.
[19] Kreader CA, Relief of Amplification Inhibition in PCR with Bovine Serum Albumin or T4 Gene 32 Protein. Appl Environ Microbiol 1995; 62(30): 1102–1106.
[20] Holodniy M, Kim S, Katzenstein D, Konrad M, Groves E, Merigan TC, Inhibition of Human Immunodeficiency Virus Gene Amplification by Heparin. J Clin Microbiol 1991; 29(4): 676-679.
[21] Khan G, Kangro HO, Coates PJ, Heath RB, Inhibitory effects of urine on the polymerase chain reaction for cytomegalovirus DNA. J Clin Pathol 1991;44: 360-365.
Published
2019-07-09
Section
Review Article