Why the mechanisms of biological evolution are still not revealed?

  • Abyt Ibraimov Laboratory of Human Genetics, National Center of Cardiology and Internal Medicine, Kyrgyzstan
Keywords: mechanism of evolution; biological variability; noncoding DNAs; heterochromatin; origin of species.


Since the days of Darwin, it is generally accepted that biological evolution rests on three pillars: variability, inheritance and selection. It is believed that main sources of variability, mechanisms of inheritance and forms of natural selection have been clarified. Nevertheless, for more than 150 years since the publication of “Origin of Species” no consensus as to the mechanisms of evolution emerged. It is highly likely that the main obstacle in elucidating the mechanisms of evolution is the incompleteness of our knowledge regarding the sources of biological variability. The following sources of variability are universally recognized: gene mutations, gene recombination during meiosis and gene duplication. However, the role of the non-genic part of the genome, which makes up the vast majority of DNA in eukaryotes, remains unclear. For example, in human chromosomes, about 98% of DNA is represented by non-coding nucleotide sequences (ncDNAs). Although no one excludes their possible role in evolution, nevertheless, studies aimed at elucidating the participation of the non-genic part of the genome in variability, inheritance and selection are extremely small. The possible role of ncDNAs in the origin of biological variability in the eukaryotic genome and their evolution is discussed.


[1] Mayr E. 1963. Animal species and evolution. Harvard University Press, Cambridge, Mass.
[2] Mayr E. 1982. The growth of biological thought: diversity, evolution and inheritance. Harvard University Press, Cambridge, Mass.
[3] Mayr E. 1988. Toward a new philosophy of biology: observations of an evolutionist. Harvard University Press, Cambridge, Mass.
[4] Mayr E. 1993. What was the evolutionary synthesis? Trends Ecol Evol 8:31–34.
[5] Kutschera U, Niklas K.J. 2004. The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften (2004) 91:255–276. DOI 10.1007/s00114-004-0515-y.
[6] Howard DJ, Berlocher SH (eds). 1998. Endless forms: species and speciation. Oxford University Press, New York.
[7] Schilthuizen M. 2001. Frogs, flies and dandelions: the making of species. Oxford University Press, Oxford.
[8] Schluter D. 2001. The ecology of adaptive radiation. Oxford University Press, Oxford.
[9] Weismann A. 1892. Das Keimplasma. Eine Theorie der Vererbung. Fischer, Jena, Germany.
[10] Ibraimov A.I. 2009. Noncoding DNAs and origin of sex. Int J Hum Genet, 9(1): 39-47.
[11] Ibraimov AI. 2010. Noncoding DNAs in Development and Evolution. In: MK Bhasin, C Susanne (Eds.): Anthropology Today: Trends and Scope of Human Biology. Delhi: Kamla-Raj Enterprises, pp. 199- 224.
[12] Ibraimov AI. 2012. On the origin of sex. GJSFR (C), 12(8) (Ver. 1.0), 1-6. [Global Journal of Science Frontier Research: C Biological Sciences].
[13] Niklas KJ. 1997. The evolutionary biology of plants. University of Chicago Press, Chicago.
[14] Rose S. 2003. Lifelines. Life beyond gene. Oxford Univ. Press.
[15] Ibraimov AI. 2011. Evolution without genes. Int J Genet, 3(1): 50-61.
[16] Ibraimov AI. 2015. The Evolution of Material Basis of Evolution. J Adv Biol, Vol. 8, No. 2, p. 1596-1607.
[17] Ibraimov AI. 2019. Evolution Without Genes: A Review, Current Research in Biochemistry and Molecular Biology, 1(1),45-68. http://dx.doi.org/10.33702/crbmb.2019.1.1.6.
[18] Prokofyeva-Belgovskaya AA. 1986. Heterochromatin Regions of Chromosomes (Russian). Moscow: Nauka.
[19] Lima-de-Faria А. 1988. Evolution without Selection. Form and function by autoevolution. Elsevier. Amsterdam, New York, Oxford.
[20] Ibraimov AI. 2019. Cell thermoregulation and origin of homoeothermic animals, Current Research in Biochemistry and Molecular Biology, 1(1) 10-13. http://dx.doi.org/10.33702/crbmb.2019.1.1.3.
[21] Yunis JJ, Prakash Y. 1982. The origin of man: а chromosomal pictorial legacy. Science, 215: 1525-1530.
[22] Third way of evolution. http://www.thethirdwayofevolution.com/.
[23] Ibraimov АI. 1993. The origin of modern humans: а cytogenetic model. Нum Evol, 8(2): 81-91.
[24] Ibraimov AI. 2007. The evolution of body heat conductivity, skin and brain size in human. J Hum Ecol, 21(2): 95-103.
[25] Ibraimov AI. 2017. From 48 to 46 chromosomes: Origin of Man. J Mol Biol Res, Vol. 7, No. 1, pp. 80-87. doi:10.5539/jmbr.v7n1p80.
[26] Micloš GLG, John В. 1979. Heterochromatin and satellite DNA in man: properties and prospects. Am J Hum Genet. 31: 264-280.
[27] Verma RS, Dosik Н. 1980. Нuman chromosomai heteromorphisms: nature and clinical significance. Int Rev Cytol. 62:361-383.
[28] Verma RS. 1988. Heterochromatin: Molecular and Structural Aspects. R.S. Verma (Ed). Cambridge University Press, Cambridge, New York, Rochelle, Melbourne, Sydney.
[29] Paris Conference, (1971), Supplement, (1975) Standartization in human cytogenetics., XI, 1-84.
[30] John B. 1988. Heterochromatin: Molecular and Structural Aspects. Ed. R.S. Verma. Cambridge University Press, Cambridge, New York, Rochelle, Melbourne, Sydney.
[31] Ibraimov AI. 2015. Heterochromatin: The visible with many invisible effects. Global Journal of Medical Research (C), Volume 15, Issue 3, Version 1.0, pp. 7-32.
[32] Pearson PL. 1973. The uniqueness of the human karyotype. In: Chromosome identification techniques and application in biology and medicine. Caspersson Т. and Zech L. (eds). New York, London. Academic Press, p. 145.
[33] Pearson PL. 1977. Pattern of bands, polymorphism and evolution of primates. In Molecular structure of human chromosomes. Yunis J.J. (Ed). Acad. Press. p. 267.
[34] Ibraimov АI, Mirrakhimov ММ. 1985. Q-band polymorphism in the autosomes and the Y chromosome in human populations. In: “Progress and Topics in Cytogenetics. The Y chromosome. Part А. Basic characteristics of Y chromosome”. А. А. Sandberg (Ed). Alan R. Liss, Inc., New York. USA, pp. 213-287.
[35] Yamada К, Hasegawa Т. 1978. Types and frequencies of Q-variant chromosomes in а Japanese population. Нum Genet, 44: 89-98.
[36] Al-Nassar KE, Palmer CG, Connealy PM, Pao-Lo Yu. 1981. The genetic structure of the Kuwaiti population. II. The distribution of Q-band chromosomal heteromorphisms. Hum Genet, 57, 423-427.
[37] Seuanez H, Fletcher J, Evans HJ, Martin DE. 1976. A polymorhic structural rearrangement in the chromosomes of two populations of orangutan. Cytogenet Cell Genet, 17: 317-326.
[38] Ibraimov АI, Mirrakhimov ММ, Nazarenko SА, Axenrod ЕI, Akbanova GА. 1982. Нuman chromosomal polymorphism. I. Chromosomal Q-polymorphism in Mongoloid populations of Central Asia. Hum Genet, 60: 1-7.
[39] Ibraimov АI, Mirrakhimov ММ. 1982. Human chromosomal polymorphism. III. Chromosomal Q-polymorphism in Mongoloids of Northern Asia. Hum Genet, 62: 252-257.
[40] Ibraimov АI, Mirrakhimov ММ. 1982. Human chromosomal polymorphism. IV. Q-polymorphism in Russians living in Kirghizia. Hum Genet, 62: 258-260.
[41] Ibraimov АI, Mirrakhimov ММ. 1982. Human chromosomal polymorphism. V. Chromosomal Q-polymorphism in African populations. Hum Genet, 62: 261-265.
[42] Ibraimov АI, Mirrakhimov ММ, Axenrod ЕI, Kurmanova GU. 1986. Human chromosomal polymorphism. IX. Further data on the possible selective value of chromosomal Q-heterochromatin material. Hum Genet, 73: 151-156.
[43] Ibraimov АI, Kurmanova GU, Ginsburg ЕК, Aksenovich TI, Axenrod ЕI. 1990. Chromosomal Q-heterochromatin regions in native highlanders of Pamir and Tien-Shan and in newcomers. Cytobios, 63: 71-82.
[44] Ibraimov АI, Axenrod ЕI, Kurmanova GU, Turapov ОА. 1991. Chromosomal Q-heterochromatin regions in the indigenous population of the Northern part of West Siberia and in new migrants. Cytobios, 67: 95-100.
[45] Ibraimov AI, Karagulova GO, Kim EY. 1997. Chromosomal Q-heterochromatin regions in indigenous populations of the Northern India. Ind J Hum Genet, 3: 77-81.
[46] Ibraimov AI, Akanov AA, Meymanaliev TS, Karakushukova AS, Kudrina NO, Sharipov KO, Smailova RD. 2013. Chromosomal Q-heterochromatin polymorphisms in 3 ethnic groups (Kazakhs, Russians and Uygurs) of Kazakhstan. Int J Genet, 5(1), 121-124.
[47] Buckton КЕ, О’Riordan МL, Jacobs P А, et al. 1976. С- and Q-band polymorphisms in the chromosomes of three human populations. Аnn Нum Genet, 40: 90-112.
[48] Lubs HА, Patil SR, Kimberling WJ., et al. 1977. Racial differences in the frequency оf Q- and С-chromosomal heteromorphism. Nature, 268: 631-632.
[49] Stanyon R, Studer М, Dragone А, De Benedicts G, Brancati С. 1988. Population cytogenetics of Albanians in the province of Cosenza (Italy): frequency of Q and С band variants. Int J Anthropol, 3(1): 14-29.
[50] Kalz L, Kalz-Fuller B, Hedge S, Schwanitz G. 2005. Polymorphism of Q-band heterochromatin; qualitative and quantitative analyses of features in 3 ethnic groups (Europeans, Indians, and Turks). Int J Hum Genet, 5(2): 153-163.
[51] Décsey K, Bellovits O, Bujdoso GM. 2006. Human chromosomal polymorphism in Hungarian sample. Int J Hum Genet, 6(3): 177-183.
[52] Al-Nassar КЕ, Palmer СG, Connealy PМ, Рао-Lo Yu. 1981. The genetic structure of the Kuwaiti population. II. The distribution of Q-band chromosomal heteromorphisms. Нum Genet, 57: 423-427.
[53] Ibraimov AI, Akanov AA, Meymanaliev TS, Smailova RD, Baygazieva GD. 2014. Chromosomal Q-heterochromatin and age in human population. J Mol Biol Res, v. 4, No. 1, 1-9.
[54] Ibraimov AI. 2016. Chromosomal Q-Heterochromatin Polymorphism in Patients with Alimentary Obesity. Biol Med, (Aligarh), 8: 275. DOI: 10.4172/0974-8369.1000275
[55] Ibraimov AI. 2016. Chromosomal Q-heterochromatin Regions in Alcoholics and Drug Addicts. Biol Med (Aligarh), 8:346. DOI: 10.4172/0974-8369.1000346.
[56] Ibraimov AI, Akanov AA, Meimanaliev TS, Sharipov KO, Smailova RD, Dosymbekova R. 2014. Human Chromosomal Q-heterochromatin Polymorphism and Its Relation to Body Heat Conductivity. Int J Genet, 6(1): 142-148.
[57] Marean CW. 2015. How Homo sapiens became the ultimate invasive species. Scientific American, vol. 313, Issue 2, p. 6-15.
[58] Ibraimov AI. 2018. Why do not all people Ill with High-Altitude Pulmonary Edema? Journal of Cardiology & Diagnostics Research, 1(1): 13-18.
[59] Ibraimov AI. 2018. Human Body Heat Conductivity in norm and pathology: A review. Advance Research Journal of Multidisciplinary Discoveries. 32(3): 12-21.
[60] Ibraimov АI. 2019. Human adaptation: why only genes? Int J Biol Med. 1: 22-33.
[61] Ibraimov AI. 2019. The origin of modern humans. What was primary: genes or heterochromatin? Hum Evol, Vol. 34, No. 1-2, 39-58.
Review Article